College Park, MD 20742 • jeet@umd.edu • (240) 828-9233 • LinkedIn • Google Scholar • Website

Education	
University of Maryland	College Park, MD
Doctoral Candidate in Physics GPA: 4.0/4.0.	Jan 2021 – Dec 2025
Research Interests: Quantum Computation and Condensed Matter Theory	
Advisors: Prof. Alexey Gorshkov and Prof. Victor Galitski	
Selected Coursework: Quantum Error Correction Quantum Algorithms	Machine Learning for Physicists Many-
body physics	
Indian Institute of Science	Bangalore, India

Bachelor of Science (Research) in Physics. GPA: 9.7/10.0 Aug 2016 – Jun 2020 Selected Coursework: Condensed Matter Physics 1 & 2 | Algorithms & Programming | Quantum Statistical Field Theory | Computational Physics | Quantum Mechanics 1 & 2

Skills

Programming Languages: Python, Julia, Mathematica, C++, Git, 3+ years experience with computing clusters Libraries: Qiskit, Pennylane, stim, ITensors, TenPy

Research Experience

University of Maryland

Research Assistant

- Simulated open quantum system dynamics using a quantum circuit in **Qiskit**, demonstrating novel strong-to-weak spontaneous symmetry breaking.
- Designed a concrete model exhibiting strong-to-weak spontaneous symmetry breaking; computed the steady-state phase diagram through large-scale tensor network calculations with ITensors and Clifford circuit simulations using stim library on high-performance computing clusters.
- Proposed quantum simulation of an exotic 3D quantum spin liquid using Rydberg atom arrays, extending beyond all previous 2D proposals; developed experimentally feasible protocols for measuring phase-identifying correlators; determined the phase diagram for a system of over 2,000 qubits using a combination of analytical and numerical methods.
- Performed high-precision Monte Carlo simulations on computing clusters to compute ground-state properties of dimer models on various lattices.
 - Engineered an exactly solvable Hamiltonian on a quasicrystal, and demonstrated that the associated gauge theory with matter is in the confined phase.
 - Efficiently simulated systems with up to 14,000 qubits on a periodic lattice; and rigorously proved for the first time that the ground-state quantum phase can depend on boundary shape.
- Introduced a new renormalization group framework for loop-based gauge theories, providing a completely new perspective on the transition in the compact U(1) gauge theory.

Teaching Assistant

• Assisted in teaching and grading for a general physics course.

Indian Institute of Science

Project Assistant

• Simulated dynamics of strongly correlated spin systems through Trotterized evolution and executed implementations on IBM quantum hardware using Qiskit.

Technical University of Munich

Summer Intern

Munich, Germany May 2019 - Aug 2019

College Park, MD Jun 2021 – Present

Jan 2021 - May 2021

Sep 2020 – Dec 2020

Bangalore, India

• Employed **tensor network methods** to study the gauged Kitaev chain, revealing novel fermionic symmetry protected topological order.

Research Projects

- 1. Breakdown of the thermodynamic limit in quantum spin and dimer models [arXiv:2506.15769].
- 2. A quantum monomer-dimer model on Penrose tilings [arXiv:2503.15588].
- 3. Quantum spin ice in three-dimensional Rydberg atom arrays [Phys. Rev. X 15, 011025 (2025)].
- Instability of steady-state mixed symmetry-protected topological order to strong-to-weak spontaneous symmetry breaking [arXiv:2410.12900].
- 5. Renormalization Group scheme for field theories on loops [Manuscript in preparation].
- 6. Employed tensor network methods to determine ground state properties of a gauge theory in a topological phase using the TenPy library in Python. Work led to a publication [SciPost Phys. 10, 148 (2021)].
- 7. Renormalization group study of systems with quadratic band touching [Phys. Rev. B 103, 195118].